Direct Imaging of Transient Fano Resonances in N_{2} Using Time-, Energy-, and Angular-Resolved Photoelectron Spectroscopy.

نویسندگان

  • Martin Eckstein
  • Chung-Hsin Yang
  • Fabio Frassetto
  • Luca Poletto
  • Giuseppe Sansone
  • Marc J J Vrakking
  • Oleg Kornilov
چکیده

Autoionizing Rydberg states of molecular N_{2} are studied using time-, energy-, and angular-resolved photoelectron spectroscopy. A femtosecond extreme ultraviolet pulse with a photon energy of 17.5 eV excites the resonance and a subsequent IR pulse ionizes the molecule before the autoionization takes place. The angular-resolved photoelectron spectra depend on pump-probe time delay and allow for the distinguishing of two electronic states contributing to the resonance. The lifetime of one of the contributions is determined to be 14±1  fs, while the lifetime of the other appears to be significantly shorter than the time resolution of the experiment. These observations suggest that the Rydberg states in this energy region are influenced by the effect of interference stabilization and merge into a complex resonance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Femtosecond energy- and angle-resolved photoelectron spectroscopy

Articles you may be interested in Comment on " Photoelectron angular distributions as a probe of alignment in a polyatomic molecule: Picosecond time-and angle-resolved photoelectron spectroscopy of S1 p-difluorobenzene " [J. Coherent polyatomic dynamics studied by femtosecond time-resolved photoelectron spectroscopy: Dissociation of vibrationally excited C S 2 in the 6 s and 4 d Rydberg states ...

متن کامل

Photoelectron kinetic energy dependence in near threshold ionization of NO from A state studied by time-resolved photoelectron imaging.

Photoelectron angular distributions in the laboratory frame (LF-PADs) from the A((2)sigma(+)) state of NO molecule were measured by femtosecond time-resolved photoelectron imaging with (1 + 1(')) resonance enhanced multiphoton ionization via the A state. High-precision measurements of the anisotropy parameters of LF-PADs were performed for the photoelectron kinetic energy from 0.03 to 1.05 eV a...

متن کامل

Time-resolved photoelectron spectroscopy of wavepackets through a conical intersection in NO2.

We report the results of theoretical studies of the time-resolved femtosecond photoelectron spectroscopy of quantum wavepackets through the conical intersection between the first two (2)A' states of NO(2). The Hamiltonian explicitly includes the pump-pulse interaction, the nonadiabatic coupling due to the conical intersection between the neutral states, and the probe interaction between the neu...

متن کامل

Femtosecond time - resolved spectroscopy in polyatomic systems investigated by velocity -

Femtosecond time-resolved spectroscopy in polyatomic systems investigated by velocity-map imaging and high-order harmonic generation presented by David STÄDTER Revealing the underlying ultrafast dynamics in molecular reaction spectroscopy demands state-of-the-art imaging techniques to follow a molecular process step by step. Femtosecond time-resolved velocity-map imaging is used to study the ph...

متن کامل

Non-adiabatic intramolecular and photodissociation dynamics studied by femtosecond time-resolved photoelectron and coincidence imaging spectroscopy.

Time-resolved photoelectron spectroscopy (TRPES) is emerging as a useful tool for the study of non-adiabatic dynamics in isolated polyatomic molecules and clusters due to its sensitivity to both electronic and vibrational dynamics. A powerful extension of TRPES, coincidence imaging spectroscopy (CIS), based upon femtosecond time-resolved 3D momentum vector imaging of both photoions and photoele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 116 16  شماره 

صفحات  -

تاریخ انتشار 2016